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Stochastic theory of emission and absorption of quanta 
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t Dipartimento di Fisica, Universiti ‘La Sapienza’, Roma, Italy 
f Research Center Bielefield-Bochum-Stochastics, University of Bielefeld, Bielefeld, 
West Germany 

Received 1 July 1985 

Abstract. The attempt to reformulate quantum theory in the form of a theory of stochastic 
processes, which has recently met with considerable success, has failed up to now to 
describe the most typical quantum effect: the emission and absoption of field quanta. The 
purpose of the present paper is to explore the possibility of constructing a stochastic field 
theory based on the assumption that for any normal mode of a given classical field, the 
corresponding action variable becomes a stochastic variable assuming only positive integer 
values in units of h. 

The proposed method reproduces the known properties of simple quantum field 
theoretical models without recourse to probability amplitudes, which are quantities 
extraneous to classical probability theory. The probability transition rates, for simple states 
of the field, tum out to be those of simple Poisson processes. 

1. Introduction 

The possibility of reformulating quantum theory in the form of a theory of stochastic 
processes has been explored in recent times with some success (Guerra 1981). The 
most elaborate attempt is the theory known as stochastic mechanics developed by 
Nelson (1966). This theory describes the behaviour of a non-relativistic system in 
configuration space under the influence of a random disturbance of unspecified origin. 
Its motion is therefore the result of the joint action of the classical and the stochastic 
forces, leading to a continuous but non-diff erentiable chaotic trajectory, typical of a 
Markov diffusion process. From this point of view the wave-like behaviour of a single 
particle predicted by quantum mechanics is explained by showing that the time 
evolution of its position’s probability density is the same as the one derived from the 
corresponding Schrodinger equation. 

In spite of recent substantial progress on various aspects of the theory (Dohrn et 
al 1979, Jona-Lasinio et a1 1981, Schucker 1980, Guerra and Morato 1983, De Falco 
et a1 1982, Serva 1984), however, conceptual and computational difficulties arise, as 
Nelson himself has shown (Nelson 1983) already for a two-particle system. These 
difficulties are in fact of the same kind as those faced by Schrodinger in the early days 
of wave mechanics, when he tried, unsuccessfully, to give a physical meaning in 
configuration space to the wavefunction of an N-particle system, by connecting it with 
the actual motion of the particles in the physical three-dimensional space. 

For the same reason the formalism of stochastic mechanics, which stresses so 
heavily the role of the particle trajectories, cannot readily be extended to the treatment 
of the quantum properties of fields. 
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In fact, attempts in this direction (Guerra and Loffredo 1980), realised by replacing 
the classical oscillators of the field’s normal modes by Nelson’s oscillators, are unable 
to explain the field’s corpuscular properties, because in this theory oscillators do not 
have a discrete energy spectrum. It is therefore no longer possible to interpret, as one 
does in quantum field theory, the nth excited state of a given oscillator as a state of 
the field with n quanta of the corresponding mode. In this framework it seems therefore 
impossible to describe the most typical (and indeed the first one discovered historically) 
quantum effect: the emission and the absorption of light quanta. This obstacle shows, 
in our opinion, that the programme of reformulating quantum theory in terms of 
stochastic processes should take as its point of departure the established fact that the 
electromagnetic field, whose wave-like behaviour is guaranteed by classical physics, 
also shows, under suitable conditions, particle-like properties. In other words we 
believe that a stochastic theory should give priority to the task of reproducing the 
particle-like properties of fields predicted by quantum theory rather than aiming at 
explaining the wave-like behaviour of particles to begin with. 

In a certain sense the question is not new. Historically the two fathers of quantum 
electrodynamics, P A M Dirac (Dirac 1927) and P Jordan (Jordan 1927) held widely 
different opinions about the nature of particles. Dirac believed that particles and fields 
are two essentially different entities, as shown by their respective classical limits. 
Correspondingly for him the quantisation procedure, which transforms into q numbers 
the c-number classical variables of any dynamical system maintaining their mutual 
relations (Poisson brackets and equations of motion), provides the (classical) particles 
with wave-like properties and the (classical) fields with corpuscular properties. Jordan, 
on the contrary, was convinced that the existence of particles is always a consequence 
of quantisation, both in the case of bosons (photons) and of fermions (electrons and 
protons, in his time). For him, in the classical limit only fields exist and therefore 
Schrodinger’s equation (as well as its relativistic Dirac generalisation) has conceptually 
the same physical meaning as Maxwell’s equations. 

Of course, since the two ways of looking at physical reality led ultimately to the 
same theory (even if the Feynman picture can be seen as a direct offspring of the Dirac 
viewpoint and the Tomonaga-Schwinger formulation as a development of Jordan’s) 
the choice between them can be considered a metaphysical question devoid of physical 
meaning. This is no longer true, however, when one is looking for a new theory. It 
may well be, in fact, that the monistic ‘metaphysical core’ of Jordan’s programme is 
more fruitful as a guiding line for the formulation of a stochastic theory than the 
dualistic approach of Dirac. 

Quite recently a formulation of stochastic mechanics has been advanced in which 
has been added to the diffusion process of Nelson a discrete stochastic process (De 
Angelis and Jona-Lasinio 1982). This work treats the spin component as a discrete 
random variable and gives a probabilistic version of the non-relativistic Pauli equation. 
Successively (Guerra and Marra 1984) a stochastic version of quantum mechanics in 
terms of Markov random processes taking values on the eigenvalues of a complete set 
of orthonormal functions in the system’s Hilbert space has been proposed. 

The present paper has been inspired by the first one. Only later have we realised 
that our approach fits the scheme proposed in the second one. 

One purpose is to explore the possibility of constructing a stochastic field theory 
based on the assumption that for any normal mode of a given classical field with 
amplitude qk( t ) ,  the corresponding action variable Jk becomes a stochastic variable 
assuming only positive integer values in units of h. This of course means that the 
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energy Ek of any normal mode is also a stochastic variable assuming only positive 
integer values in units hWk. In other words, we assume as a starting point of our theory 
what is usually considered to be a consequence of quantisation, namely of defining 
the amplitude qk and its conjugate momentum P k  to be operators satisfying the 
commutator rule 

[qk, Pk'l = ihskk'. (1.1) 

This does not imply, however, that our theory has a weaker explanatory power 
than quantum theory. It simply means that the mathematical entities introduced in 
the two theories to start with are different: the assumption (1.1) is in fact equivalent 
to the assumption that nk = J k / h  can take only integer values. 

The dynamical evolution of the field is described in our theory by means of the 
infinite set of discrete stochastic processes fik(f). In principle the state of the field at 
time t will therefore be defined by the probability distribution p ( n , ,  n2,. . . , nk, . . . ; t )  
that f i l (  t) = n,, i i 2 ( t )  = n2,.  . . , f i k (  t )  = nK. To obtain the time evolution of p the jump 
probabilities per unit time will be needed. We will show that these quantities, for 
simple states, are indeed very simple and have straightforward physical interpretations. 
Of course in the case of free fields without sources the number of quanta in each mode, 
if initially given, remains constant. 

The purpose of the present paper is to discuss two simple field models and the 
equations that govern their stochastic time evolution. It will be found that the method 
proposed reproduces the known properties of the corresponding models in quantum 
field theory, without recourse to probability amplitudes, which are quantities extraneous 
to classical probability theory. The formalism developed here seems sufficiently general 
to allow generalisations to more realistic field theories. Attempts in this direction are 
in progress. 

2. The fixed source model: stochastic equations 

Assume a classical field u(x, t) in one dimension with Lagrangian 

L = f I,,' [ (5) - (E) '1 dx  + lo' u(x) U(X, t )  dx. 

The usual expansion in standing waves 
m 

u(x, t )  = 1 q k ( t )  sin wkx, Wk = r k /  1, 
k = l  

together with the introduction of canonical variables 

(2.4) 

In this simple case therefore the field decouples into a sum of independent harmonic 
oscillators. It will therefore be sufficient to treat each of them separately. We will 
drop the subscript k and deal, from now onwards, with the Hamiltonian 

H = ;( p 2 f  d q 2 ) +  uq (2 .5)  
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which reduces to 

H = Ho+ Hi, 

Ho = wa+a, 

Hi = ( u / 6 ) ( a  + a+) ,  

when the Dirac oscillator variables 

are introduced. 
The standard quantisation procedure transforms a, a+ into operators satisfying 

[a ,  a+]  = 1 (2.10) 

H0l n) = nw In) 

and expresses any state vector in terms of eigenstates of the free Hamiltonian 

(2.1 1) 

with 

In) = ( l /m) (a+)" lO) ,  aiO) = 0. 

The Schrodinger equation 

(2.12) 

gives therefore 

The Hamiltonian (2.6) can be diagonalised by means of the transformation 

a = b - A ,  A = v / w 6 .  (2.15) 

Equation (2.6) then becomes 

H=wb+b-A2w. (2.16) 

The lowest eigenstate 10) of H therefore has eigenvalue -A2w. It can be expressed in 
terms of the eigenstates of Ho as 

(2.17) 

The ground state IO) is therefore a coherent oscillator state of strength A. It should be 
kept in mind that the complete set of the Hamiltonian eigenstates 

H 1 PI ) = ( nw - A 2~ )I n ), (2.18) 

In) = (l/&!)(b+)nlo), (2.19) 

can be generated from the ground state (2.17) by means of the recurrence relation 

(d /dA) ln )=&ln- l ) - (n+1) ' / 2 ln+ l ) .  (2.20) 
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Let us now use the Schrodinger equation (2.14) to derive the time derivative of the 
density 

A n ,  t )  = l(n1*(t))I2. (2.21) 

We have 

(2.22) 

Equation (2.22) is the point of departure for the stochastic interpretation of our 
field model. In fact one may try to interpret equation (2.22), following the method 
suggested by De Angelis and Jona-Lasinio (1982), as the forward Kolmogorov equation 
for a discontinuous Markov process in the state space of positive integers: 

d 
d t  

(2.23) 

where p*( U, t )  are the jump probabilities per unit time from n to n f 1 respectively. 
Because of the positivity condition on these probabilities the identification of the 
coefficients of the densities in (2.22) and (2.23) is not immediate. By setting 

- d n ,  t ) = P - ( n + l ,  t ) p ( n + l ,  t ) + p + ( n - l ,  t I p ( n - 1 ,  t ) - [p+(n,  t ) + p - ( n ,  t)lp(n, t )  

(2.24) 

U n ,  2)  = A w f i ( + ( t ) l n -  l) /(+(t)In),  (2.26) 

one verifies that, since 

A+(n, t ) p ( n ,  t ) = A T ( n + l ,  t ) p ( n + l ,  t ) ,  (2.27) 

The quantities A*(n, t )  are not independent. In fact they are connected by the 

A+(n, t ) A - ( n + l ,  t ) = A 2 w 2 ( n + 1 ) .  (2.28) 

In order to define completely the stochastic process one needs, in addition to the 
Kolmogorov equation (2.23), another equation for the jump probabilities (2.24). By 
analogy with Nelson’s assumption, we may define the phase S ( n ,  t )  as 

equations (2.22) and (2.23) are identical and the condition of positivity is satisfied. 

relation 

(nl*l(t)) = p’’*(n, t )  exp[iS(n, 211.  (2.29) 
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Then one easily verifies that (2.24)-(2.26) can be written in the form 

A-( n, t )  = Jf; exp{i[ S (  n, t )  - S( n - 1,  t ) ] } .  

(2.30) 

(2.31) 

In order to reproduce the Schrodinger equation (2.14), S(n, t )  must satisfy the 
equation 

d 
d t  --S(n, t ) = n w + R e [ A + ( n ,  t ) + A - ( n ,  t ) ] .  (2.32) 

An equation of this form has been derived (Guerra and Marra 1984) by means of a 
variational principle on a suitable stochastic action. Within the framework of that 
theory, therefore, the stochastic process A (  t )  can be defined, independently from 
quantum theory, by equations (2.32), (2.23), (2.24), (2.30) and (2.31). 

Instead of introducing the phases S(n, t )  we can derive the equations for the time 
evolution of A + ( n ,  t ) .  One finds 

-i-A*(n, t ) = h 2 u 2 ( n + ~ * ~ ) + A , ( n ,  t ) [*w+A,(nf l ,  l ) - A * ( n ,  t ) - A T ( n ,  t ) ] .  
d 
d t  

(2.33) 

Of course the relation (2.28) connects A+ and A-, so that only one of the two equations 
(2.33) is really independent. 

One may introduce explicitly the real and imaginary parts of A, and write equations 
for them. We shall see, however, that it is better to work with A* directly. 

3. The ground state process 

The most interesting physical properties of the model can be derived from the stochastic 
process describing the ground state. It is important therefore to discuss it in detail. When 

IW)) = 10) (3.1) 
one has 

dp( n, t ) /d t  = 0 (3.2) 

and A, are real and time independent. From (2.17) it is easy to obtain 

(3.3) p - (  n )  = nw, 

p + (  n )  = h2w. (3.4) 
Equations (3.3) and (3.4) are simple and very interesting. They show that in the ground 
state the emission of ‘quanta’ is a Poisson process with constant probability rate while 
the absorption is a decay process with probability rate proportional to the number of 
‘quanta’. It seems therefore quite reasonable at this stage to forget quantum theory 
and assume equations (3.3) and (3.4) to be a physically meaningful postulational basis 
for the ground state process. In fact one easily verifies that (3.3) and (3.4) are the 
simplest solutions of equations (2.34). 
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Equations (3.3) and (3.4) are sufficient to derive the transition probability 
P(n ,  t ;  no, to) for finding in the field n ‘quanta’ at time t if their number was no at time 
to. This conditional probability, which has the Kolmogorov property 

P(  n, t ;  noto) = C ~ ( n ,  t ;  n‘, t ’ ) ~ (  n’, t’;  no, to), t > t ’ >  to, (3.5) 
n’ 

satisfies the Kolmogorov equation 

I d  
w dt  

P ( n ,  t ;  no, t o )=- (n+A*)P(n ,  t ;  noto)+A2P(n-l, t ;  noto) -- 

+ ( n + l ) P ( n + l ,  t ;  noto) (3.6) 

which can be rewritten 

1 d  - - P(n, t ;  noto) = (K), , ,P(n’,  t ;  noto) 
w d t  n’ 

in terms of the matrix 

( K ) , . ,  = - ( A 2 +  n ) 8 , , ~ + A 2 8 , ~ , n ~ l + n ’ ~ n ~ , n + ~ .  

It satisfies also the initial condition 

lim P ( n ,  t ;  no, to)  = 
1 - t 0  

(3.7) 

(3.8) 

(3.9) 

Following the standard methods of probability theory we define a Kolmogorov 
generator L which is the transposed matrix of K :  

(L),,,,, =(KT),,rn =(K),,,,,= - ( A 2 + ~ ) 6 , , ~ + A 2 6 , ~ , , + ~ + ~ ~ n ~ , n ~ ~ .  (3.10) 

Then one has 

P(n ,  t ;  noto) = {exp[w(t - f0)Llln4. (3.11) 

That (3.11) satisfies (3.5) and (3.9) is evident. It is also easy to see that it satisfies (3.7) 
because 

1 d  
- - P( n, r; noto) = { L exp[ w (  t - to)  L},,,, 
w dt 

= E  L,,,.(exp[w(t- ro)~]}nr,,,,=C K , , , , , P ( ~ ’ ,  t ;  noto). (3.12) 

The expression (3.11) is however purely formal because L is the sum of three 

(Lo),,, = - ( A 2 +  n ) S n n ’ r  (3.13) 

(L+)flffl = A2&,, ,+1,  (3.14) 

( L - ) n , n  = nsn, , , , - , .  (3.15) 

The exponential can however be ‘disentangled’ following the time ordering pro- 
cedure invented many years ago by Feynman (1951) because the three matrices (3.13), 
(3.14) and (3.15) have the simple commutation properties: 

[L-, L+] = A 2 1 ,  (3.16) 

[ L-, Lo] = - L-. (3.17) 

[L+,  Lo1 = L+. (3.18) 

n’ n’ 

non-commuting matrices 
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One defines 

exp[ U( t - to) L] = exp( w Ill L( s) ds) 

where the convention is that 

i, j = 0, i. 

The procedure is as follows. Define 

S( t )  = exp(wLot). 

Then, because of (3.17) and (3.18) one has 
S - ' (  t )L+S(  t )  = ewlL+, 
S-'(  t )  L-S( t )  = e-wlL-. 

Then 
I r t  

exp[w(t-t ,)L]=S(t)  exp w [e"'L+(s)+e-"'L-(s)] ds  S-'(t0). \ J,, ) 
Furthermore, defining 

A( t )  = w ews ds  = exp[w( t - to)] - 1 5,: 
one has 

exp(-A(t)L+)L- exp(A(t)L+)= AZA(t)+ L-. 

Then one obtains from (3.24) 

exp[w(t-to)L]= S ( t )  exp(A(t)L+) exp(A(t)L_)S-'(t,)G(t, to) 

where 

A(t) = w e-ws ds  = 1 -exp[-o(t-  to)], I,: 
G( t, to) = exp( A ' w  1 ' e-W'A( s) ds). 

10 

Now, since 

one finds immediately (we take to = 0) 

P(n, t ;  no, 0) = exp[ -( n + A2)t]G( t )  1 (")( n0)E(AA2)n-k(A)I-k 
k s n , n o  k k n!  

which can be rewritten as 

P(n ,  t ;  no,O)=[(ew'-l)- '  d/dA2+1]"~P(n, t ; O , O )  

P(n ,  t ;  0,O) = e-nw1 exp[A*(e-"' - l>](e"'- l)"(A')"/n!. 

where 

(3.19) 

(3.20) 

(3.21) 

(3.22) 
(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 
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4. Time dependent source: emission and absorption probability rates 

It is interesting to point out that the results obtained thus far can be easily extended 
to the case of a time dependent source. This is important because, as is well known, 
it is precisely the solution of this model which is the point of departure for the Feynman 
reformulation of quantum electrodynamics. 

By replacing equations (2.6) and (2.7) with 

H = wa+a + ( l /&) (u (  t ) a  + U*( t ) a + )  (4.1) 

one arrives at the same Kolmogorov equation (2.23) with 

(4.2) 

Equation (2.27) still holds and in equation (2.28), A 2  is replaced by lu(t)12/2w3. 
Equations (2.34) now become 

-i du*(t) IUI2 

dt  u * ( t )  dt  2w 
A+(n, t )+ - (n+ l )  

d 
-i-A+(n, t )  =- - 

d -i du(t)  A-(n, t ) + - n  lUl2 -i-A-(n, t )  = - - 
dr u ( t )  dt  2 0  

+ A - (  n, t ) [ - w  +A-(  n - 1, t )  -A-(  n, t )  -A+(  n, t ) ] .  (4.5) 

It is interesting to show how one obtains from the lowest-order approximation in 
(uIz from (4.4) and (4.5) and the Kolmogorov equation (2.23) the usual expressions 
for the probability rates of emission and absorption when the field is initially in a state 
with no quanta: 

p(n ,  0) = fj"fb. (4.6) 

u ( t )  = uo exp(ioot). (4.7) 

Assume for the source a single frequency time dependence: 

Then equation (4.4) becomes, neglecting terms of order U:, 

-i-A+(no, t)=-(n,+l)+(w -wo)A+(n0, t) .  (4.8) 
d U: 
d t  2w 

Its solution is 

which gives for the jump probability p + (  no, t )  

From (2.23) one obtains, inserting (4.6) in place of p ( n ,  t ) ,  

(dldtIp(n0-t 1, t )   no, t ) .  

(4.9) 

(4.10) 

(4.11) 
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This expression gives a finite contribution, as usual, only when wo w. In fact, as first 
shown by Dirac in his historic paper of 1927, one integrates the probability rate in a 
small range around this value. Then, for t sufficiently large, one has 

Similarly from equation (4.5) one finds 

v i  
2 0  O - W O  

1 - exp[ -i( w - wo)  t ]  A-(no, t )=-no 

which gives 

(4.13) 

(4.14) 

Equations (4.13) and (4.14) are the standard results for the Einstein probability rates 
of photon emission and absorption from an electric dipole source in the presence of 
radiation. 

5. Time dependent source: transition probability from the vacuum state 

In a simple case equations (4.4) and (4.5) can be solved exactly. In fact, by using 
(2.28) they can be rewritten as 

-i-A+(n, d t)=--A+(n, -i dv* t ) + - ( n + l )  l V l *  

d t  U* d t  2w 

(5.1) 
lv12 n 

-i-A-(n, d t ) = -  -i -A-(n, dv t ) + n -  lv12 
dt  v d t  2 0  

- w + A - ( n - l ,  t ) -A-(n,  2 ) - -  2w A - ( n + l ,  t )  (5.2) 

One sees immediately that these equations are satisfied, as was the case for the ground 
state process for a time independent source, by a A+ independent of n and a A- 
proportional to n. In fact with this assumption equations (5.1) and (5.2) reduce to 

(5.3) d -i dv* I V l 2  -i-A+( t )  = - -A+( t )  +-+ wA+( t) ,  
d t  U* d t  2w 

d -i dv 
-i-A-(n, d t  t)=--A-(n, v dt  t)-wA-(n, t )+A- (n ,  t)[A-(n-l, t)-A-(n, t)]. (5.4) 

The first one is easily solved because it is linear. Calling 

1 P( t )  =- lo' v ( s )  e-iws ds  (5.5) 
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one checks immediately that 

(5.6) 

is the solution of (5 .3) .  Furthermore, because of (2.28) one has 

A.-(n, t )  = n ( l ~ 1 ~ / 2 w ) ( A + ( t ) ) - ' .  (5.7) 

Equation (5.7) provides indeed the solution of (5.4).  By inserting the former into the 
latter one verifies that (5 .4)  is satisfied as a consequence of (5.3). The solutions give 
the jump probabilities for the stochastic process corresponding to the initial state 

~ ( n ,  0) = Sno. (5 .8)  

( I~(o)12/2w)P(o ,  0 ) t  = t - ' p ( l ,  0) 

In fact equation (2.27) entails, for t + 0, taking into account (5 .7) ,  

(5 .9 )  

which clearly implies 

P(1,O) = 0 (5.10) 

and, by induction, equation (5 .8) .  
This result is important because it shows that for the time dependent source the 

vacuum has the same physical property as the ground state with constant source, 
namely that emission is a Poisson process independent of n and absorption is a decay 
process, proportional to n. 

It is therefore possible, in this case, to evaluate the explicit expression for the 
transition probability, following the method developed in 0 3. We define 

p+(n,  t )  = 5+(t), 
p - (  n, t )  = nl-(  t ) .  

We have again 

P( n, t ;  0,O) = exp( jOr L(s) ds) 
n.0 

(5.11) 

(5.12) 

(5 .13)  

where now the three matrices Lo( t ) ,  L,( t )  depend on t not only as an ordering parameter 
but also through the explicit time dependence of the functions l*(t). Equations (3.13),  
(3.14) and (3.15) are now replaced by 

(5.14) 

(5.15) 

(5 .16)  

(5.17) 

(5.18) 

(5.19) 
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The disentangling procedure is camed out by using the same method as in 0 3. 
Defining 

(5.20) 

(5.21) 

(5.22) 

one obtains 

P(n, i ;  o,0)=expl-~+(t)+cClit)-n~-(t)I(cp+(t))"ln!. (5.23) 

Explicit evaluation with the simple form of time dependence (4.7) gives 

v i  4 w-wwg 2w-wwg 
t COS - e+( t )  = - - sin - 4 t ,  2w w-wwg 2 

(5.24) 

(5.25) 

For the simple case n = 1 one easily recovers the result (4.12) in the lowest order of 
v i  by taking 

2vg sin2[&( w - wo) t]  
w ( U  -wo)2 

P(1, t ;  0,O) = lo1 l + ( s )  exp( - Is f  l-(s') ds') ds  =- 

which gives 

v i  - P(1, t ;  0,O) = T-. 
w 

(5.26) 

(5.27) 

Equation (5.23) is the main result of this section. The transition probability from 
the vacuum to the state with n quanta corresponds to the expression given by Feynman 
for the transition amplitude of the same process in the form 

with 

G,,(t)=exp( -&lof ds lo rds '  v ( s ) u * ( s ' )  exp[-iwls-s'l] . (5.29) 1 
A consistency check with quantum mechanics is given by the relation 

P(0 ,  t ;  0,O) = exp - l+(s) exp - l-(s') ds' = exp[-IP(t)l21 = IGoo(t)(' [ lot ( I*' )I 
(5.30) 

which can be proved by taking into account that, since 
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one has 

(5 .32 )  

It is worthwhile mentioning that, since equation ( 5 . 1 )  becomes linear when A+(n, t )  
is independent of n, one can add to the solution ( 5 . 6 )  a term 

A!+( t )  = (iu*( [)/a) eiwrA (5 .33 )  

with A time independent, which is a solution of the homogeneous equation. It is 
interesting that, when the term (5 .33 )  is present, the initial state is no longer the vacuum, 
because equation (5.9) is replaced by 

A n ,  0) = [ (n + 1 ) / A 2 1 p ( n +  1 , O ) .  ( 5 . 3 4 )  

This is the same relation that holds for the ground state, or more generally for any 
coherent state of strength A when the source is time independent. 

6. An iterative method for the determination of the transition probability 

We will develop in this section a method which allows the determination of the solution 
of the Kolmogorov equation ( 2 . 2 3 )  for the transition amplitude by means of successive 
approximations. The function P( n, t ;  n’, t’) is defined as the probability that the field 
changes from n’ to n in the time interval t - t’. This may happen through any number 
of jumps greater than or equal to n - n ’ .  Let us therefore define the function 
Pk(n, f; n’, t’) as the transition probability from n ’  to n with k jumps. Obviously it 
will be 

XI 

P(n, t ;  n‘, t ’ )  = c P,(n, t ;  n ’ t ’ ) .  ( 6 . 1 )  
k = O  

When k < n - n’, Pk(flt; n’t’) vanishes. Then Po(nt, n ’ t ’ )  is different from zero only 
when n = n’. This quantity is therefore the probability that the field does not make 
transitions in the interval t - t ’ .  Therefore we will have 

Po(n, t ;  n’, t ‘ )  =exp( - { ‘ [ p + ( n ,  1’ s ) + p - ( n ,  s ) ]  ds).  ( 6 . 2 )  

The meaning of the following equality will then by now be clear: 

( 6 . 3 )  

We have therefore the possibility of calculating the transition probability by an 

The function & (  n t ;  n‘t’) satisfies the differential equation 
iteration procedure with increasing numbers of jumps. 
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As a simple example we refer to the ground state process with jump probabilities 

(6.5) 

given by (3.3) and (3.4). We will have 

Po( n, t ;  n ' t ' )  = exp[-(u2/2w + n u ) (  t - t ' ) ]  

which gives, as introduced in (6.3), 

P , ( n + l , t ;  n ' t ' )=-  P o ( n , s ; n ' r ' ) P o ( n + l , t ; n + l , s ) d s  2w v 2  I' ,' 

Higher-order terms can be computed similarly. 
From equation (6.6) it further follows that 

P , ( n + l ,  t ;  n, t - A t )  U* -- - 
A t  2 w 2 '  

lim 
Af+O 

This equality is a consequence of the more general relations 

P , ( n + l ,  t ;  n, ? - A t )  
A t  = p+(n, t ? ,  lim 

Af+O 

P,(n-1, t ;  n, ? - A t )  
A t  = P-(n, t ) ,  lim 

A t e 0  

that can be proved starting from (6.3). 

7. Conclusions 

In spite of the simplicity of the model the results obtained are, we believe, of some 
interest, both on their own merit, and in view of possible generalisations. We have in 
fact shown that equations (4.4) and (4.5) have simple solutions whose physical meaning 
can be directly understood in terms of probability theory by stating that in the coherent 
states of the field the emission probability of a quantum is independent of n and the 
absorption probability is proportional to n. This property is clearly shared by the 
vacuum, and by the ground state with time independent source. 

Future investigations will show whether this simple property is also valid for more 
realistic field theories. The hope that the method developed here may also lead to a 
simple alternative formulation in these cases is, however, not completely unreasonable. 
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